Incremental Learning of Independent Topic Analysis

نویسندگان

  • Takahiro Nishigaki
  • Katsumi Nitta
  • Takashi Onoda
چکیده

In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets. Keywords—Text mining, topic extraction, independent, incremental, independent component analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Metacognitive Strategies Training on Reading Comprehension of Field-dependent / Field- independent Learners

This study investigated how English as Foreign Language (EFL) learners with different learning styles (Field dependent and field independent) boost up their reading comprehension abilities as they develop their metacognitive skills. To conduct this research, 60 participants were randomly invited to sit PET (Preliminary English Test) to ensure homogeneity of the participants in terms of language...

متن کامل

A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System

In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...

متن کامل

Incremental Learning: Areas and Methods – A Survey

While the areas of applications in data mining are growing substantially, it has become extremely necessary for incremental learning methods to move a step ahead. The tremendous growth of unlabeled data has made incremental learning take up a big leap. Starting from BI applications to image classifications, from analysis to predictions, every domain needs to learn and update. Incremental learni...

متن کامل

Incremental Construction of Topic Hierarchies using Hierarchical Term Clustering

Topic hierarchies are very useful for managing, searching and browsing large repositories of text documents. The hierarchical clustering methods are used to support the construction of topic hierarchies in a unsupervised way. However, the traditional methods are ineffective in scenarios with growing text collections. In this paper, an incremental method for the construction of topic hierarchies...

متن کامل

On the effect of low-quality node observation on learning over incremental adaptive networks

In this paper, we study the impact of low-quality node on the performance of incremental least mean square (ILMS) adaptive networks. Adaptive networks involve many nodes with adaptation and learning capabilities. Low-quality mode in the performance of a node in a practical sensor network is modeled by the observation of pure noise (its observation noise) that leads to an unreliable measurement....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017